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A B S T R A C T  

Analytical investigations of two-impulse t r ans fe r s  between 

e l l i p t i c a l  o rb i t s ,  us- vector analysis and other  mathematical techniclue 

have gielded pertinent,  heretofore uhknorm f a c t s  about an orbital t r a n s f e r  

function. One par t icu lar  mode of analysis,  t h e  Bell-Arenstorf technique, 

helped shqw not only t h a t  the minimum veloci ty  increment solut ion between 

two points on elliptical o r b i t s  could be along a hyperbola, but a l s o  t h a t  , t  

* .  

'1 

there  could be two r e l a t i v e  minima i n  t h i s  impulse f'unction. Par t icu lar  

f both these phe 

u&sia ha; been restricted most . _ - .  

elliptical orb i t s ,  this analysis Includes inclined ellfptica 

An eighth-order polynomial expression, t h e  real roots  of which 918. orb i t s .  
v 

refer t o  extreasr i n  the impulse function, i s  determined. Since it can be 

f these roots are axtramow--not corresponding t o  

lo& are 'next detemlned that define regions i n  uhi 

These regions i d e n t i e  those roots  that do corre3- all &rem must lie. 

pond ' to extrema in t h e  impulse function and those t h a t  are extraneous. 

These new analytical firdiags have been incorporated i n t o  an earlier com- 

puter conto& napping program that locate8 the optimum transfer between 

e l l i p t i c a l  arbits. 
L 
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I. INTRODUCTION 

i 

One of the mjor problems of t h e  hascent space age i s  concerned 
' ., . .r .. ' . X I  with changing orb i t8  i n  space. To transfer from o r b i t  t o  o r b i t  can require 5 .$a> 

immense quant i t ies  of fuel ,  far beyond t he  I lmitat ions of today's engineer- .:i; 
~ q&j: ing. It is, therefore, of extreme prac t i ca l  i n t e r e s t  t o  be ab le  t o  loca t e  5 . <, 

par t i cu la r  modes of t ransfer  between these o r b i t s  t h a t  use the  least pos- 

s i b l e  fuel .  

Ihe most general problem of opthum two-impulse o r b i t a l  t ransfer ,  

i n  which t h e  chief assumption is that t h e  e l l i p t i c a l  o r b i t s  a r e  unperturbed, 

permits both the  departure point and the  arrival point t o  be a r b i t r a r y  and 

finds the  s ing le  best mOde of transfer between t h e  two given orb i t s .  

most general constraint  is t o  fix the end points; then t h e  optindzation 

procedure is carr ied out so l e lya long  a parameter defining a l l  the  transfer , 

Th 

o r b i t s  that 6 through these given terminals. . . _. 

The impulsive case of o r b i t a l  transfer is, of course, an i d e a l  
$: 
e. 

s i tua t ion .  There is one instantaneous t h rus t  f r o m  t he  initial o r b i t  i n t o  

\ *,,* 'r, t h e  t r ans fe r  orb i t ;  there  is a second instantaneous thrust t o  get i n t o  t h e  
* , L  

f i l l a l  .orbi t .  The inforxllation gained from t h e  solut ion of this problem 

should provide a basis for the  study of o r b i t a l  t r ans fe r  with finite th rus t .  

The majority of t h e  published two-impulse o r b i t a l  transfer work 

deals w i t h  fixed terminals and co-planar orbits(2-k). 

G. A. McCue(*) represents an extension, by means of a numerical contour 

The recent  Work by . 

inclined o r b i t s .  Ths 



directed towards solving the  fixed terminal problem. 

necessary to solve t h i s  problemmany times before the h e  terminal problem 

can be investigated by means of contour maps, the findinge of this analysis 

have been incorporated into Mr. McCue's numerical program. 

However, since it i s  

..a:.. 
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11. EXPLANATION OF PROBLEM FORMULATION 

Two Keplerian e l l i p t i c a l  o r b i t s  i n  space can be defined by t h e i r  

o r b i t a l  elements, a, e, i, Q,  and w. 

t r a n s f e r  problem, it is desirable t o  loca te  the  minixum velocity increment 

solut ion between any two such Keplerian o rb i t s .  

In  the  general two-impulse o r b i t a l  

If t h e  plane of t h e  second 

o r b i t  of  the transfer i s  the reference plane, then i2, t h e  inc l ina t ion  of 

the  second o r b i t ,  i s  zero. The terms ord inar i ly  referred t o  as t h e  “nodal” 

parameters, sll, and s22, a r e  made zero by se lec t ing  t h e  ISne of i n t e r sec t ion  

of t h e  two o rb i t  planes a s  the’reference d i rec t ion .  (See Figure 1) 

/ 

. This leaves seven o r b i t a l  elements (al, el, il, w1 and a2, e2, 
, V “ *  , :, +” :% 

y-subscripta one and two refer t o  elements i n  t h e  first and second o r b i t s  u*. ? . e ”  

respect ively)  that define t h e  two o r b i t s  between which the  t r a n s f e r  i s  t o  

be accomplished. 

Three variables which define a l l  possible means of t r ans fe r r ing  

from t h e  f i r s t  o rb i t  t o  t he  second o r b i t  are gl, t h e  angle from reference 
. :-.$ 

l i n e  (3) t o  a departwe point on t h e  first o rb i t ;  $6, t h e  angle from ref- ’ i ’..’reg 

erence Urn t o  arrival point on second o r b i t ;  and p, t h e  semi-latus rectum 

of t h e  t ransfer -orb i t  between the two points. 

as t h e  th i rd  variable because i L  s impl i f ies  t h e  nature of the  impulse 

’he parameter p i s  chosen 

e can produce serious 



The " t o t a l  impulse" used i n  t ransfer r ing  between the  o r b i t s  i s  

defined as the sum of t h e  magnitudes of t h e  ve loc i ty  changes necessary t o  

ge t  f r o m  the first o rb i t  i n t o  t h e  t r ans fe r  o r b i t  and then from t he  transfer 

o r b i t  i n t o  the second orb i t .  

refers t o  a par t icu lar  configuration of the  three  variables t h a t  leads t o  

the  least possible impulse between two o rb i t s .  

refers t o  the  t ransfer  orb i t  which gives the l e a s t  t o t a l  impulse f o r  a 

given arrival-point,  departure-point configuration. 

I n  t h i s  paper, an optimum impulse so lu t ion  ,. 

A minin?um impulse solut ion 

. .. 
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F I N A L  O R B I T  

FIGURE I. T R A N S F E R  GEOMETRY 



111. TRANSFER GEOMETRY I' 

I n  rendering t h e  o rb i t a l  t r ans fe r  problem subject t o  analysis, 

it i s  most convenient t o  express the  important quan t i t i e s  i n  t h e i r  vector 

representation. 

a t t r a c t i n g  body t o  t h e  departure and a r r i v a l  points. 

The vectors 2; and Q represent t he  vectors  from t h e  t 

Define u n i t  vectors  

U and g2 i n  the d i rec t ion  of E, and c2. -1 

a r e  then given by 

The components of these vectors 

= cos 8, t + sin jdl cos il j + s i n  g1 s i n  il k El - 

Pm (4 1 
ID [ 1 + % C O S i  -q 

where 

- i i n  t h e  d i rec t ion  of ,N. 

1, and & are unit vectors i n  a right-handed Cartesian system with 
v 

Three =re useful vectors i n  t h e  analysis are El, and Et- 
these  are norm1 t o  the  initial, f i rml ,  and transfer o r b i t  planes and are 

defined as follows: 

= -sin il j + cos 11 & % - 

E2 = - 
~ , = # b ~ b  w h e r e l ~ l x ~ l #  o 

k 

IIr,xl!2l 

To complete the vector description, def ine two vectors  a and e r  

these define t h e  ahape and orientat ion of t h e  two o rb i t s (6 ) .  



e= em (cos urn + sin %cos & j + s i n  w, s i n  & k) - (8 1 
where m - 1,2 

The part of the t ransfer  o r b i t  traversed i n  the  transfer is  a 

c e r t a i n  true anoxnab interval A9. 

f r o m  

This interval. my be q u l c w  d e t e d n e d  

(9 1 cos AQ = (5 . &) 

No generality i s  l o s t  if the t r u e  anomaly interpal i s  M t e d  t o  

0" c AQ < 180" 

the  first two quadrants. 

t ransfers , "  i f  the a i m s  of the  veloci ty  vectors in the  t r a n s f e r  o r b i t  are 

changed, the  long t r ans fe r s  maybe considered. 

Impulse function at A0 = 180' and A8 

simplified by considering t h e  long and short  t r ans fe r s  separately.  

i n  order t o  determine the absolute optimum t r ans fe r  between two elliptical 

o rb i t s ,  it is necessary t o  compare t he  optima found from all t he  short 

Although t h i s  does r e s t r i c t  t he  problem t o  "short 

The s ingu la r i t i ea  i n  the  

0' indicate that t h e  problem l a  

Thus, 

t r ana fe r s  and all t he  long transfers.  

For mrg e l l i p t i c a l  transfer orbit between a given departure 

point and a r r i v a l  point, there  d s t s  both a short t r a n s f e r  and a long 

t ransfer .  

it i s  important t o  rea l ize  that e i t h e r  the  short transfer o r  t h e  long 

t r a n s f e r  i s  meaningless-it would require going out t o  infinity and back. 

However, when considering pa r t i cu la r  hyperbollc t r a n s f e r  o rb i t s ,  

- 



The "Bell-Arenstorf technique" r e fe r s  t o  a geometrical method of 

analyzing t h e  two impulse o rb i t a l  t r ans fe r  problem. 

upon some cogent var iable  relationships recognized separately by Mr. H. W. 

This methcd i s  based 
L - *  

.,* . 

B e l l  of North Anerican Aviation, Inc., (7)and Dr. Richard Arenstorf of . .; 

Marsha l l  Space Flight Center ('! 
a l l  possible t ransfers  between fixed temhals on 

be represented by two hyperbolae - provided t h e  stimulus f o r  much of t h i s  

The fundamental idea of t h e  method - t h a t  

e l l i p t i c a l  o r b i t s  c& 

analysis.  

For aw two e l l i p t i c a l  o rb i t s ,  l e t  q and be t h e  vectors from 

t h e  reference posi t ion on t h e  l i n e  of i n t e r sec t ion  t o  t h e  departure and 

arrival points, respectively. 

of t h i s  angle can be selected t o  be always i n  the  f i rs t  two quadrants with- 

out  aw l o s s  of generali ty.  

made of t h e  three vectors i n  the  t r ans fe r  o r b i t  plane. 

I 

The angle between them is AQ and t h e  size 

E& forming t h e  vector  r2 - q, a triangle is 
w 

Define the two angles a and B (Figure 2) as follows: 

(10 1 121 sinAQ p = a rcs in  
1x2 - Cll 

Q = 7 -  ( / 3 + A Q )  

Consider t h e  locus of all possible  ve loc i ty  vectors  t h a t  can a c t  

upon the  point defined by q and t r a c e  a conical  o r b i t  path that goes 

through t h e  point defined by c2. 
t r ans fe r  o r b i t s  between t h e  two points, s ince a p a r t i c u l a r  o r b i t  is uniquely 

defined by its volocl ty  vector a t  a given posit ion.  

- 
This locus def ines  all possible conic . 



The veloci ty  vector of any t ransfer  o r b i t  a t  the  par t icu lar  point 

r -1 i s  given by (See Appendix 1) 

- - v_ + !z !Ll 

where p i s  t h e  s e d - l a t u s  r ec tumof  the t r ans fe r  o rb i t .  

wr i t t en  as a function of this variable p. 

Then Vt. may be 

where g i s  uni t  vector i n  the direction of r;! - cl. 
of p greater than zero defines a ce r t a in  t r ans fe r  o r b i t  whose veloc i ty  

vector  a t  xl has compomnts in the d i rec t ion  of E and gl. 

Every pos i t ive  value 
- * 

For any coordinate axes, the  locus of a l l  points such that t h e  

product of the coordinates i s  a constant forms a hyperbola with the  axes 

as asymptotes. Since the product of the magnitudes of t h e  components i n  

t h e  H i r e c t i o n  and the direct ion is independent of 2, 

the .  formulation of Vtl defines a hyperbola withe t h e  oblique coordinates 

established by m_ and El as asymptotes. Thus t h e  locus of all possible 

ve loc i ty  vectors leaving gl and arriving a t  g2 on a conic path forms a 



' _- 

I .  

Similarly,  a t  rZ the velocity vector f o r  any t ransfer  o r b i t  

(dependent upon i ts  semi-latus rectum) i s  given by 

q2=Tp23 (171 

This defines another hyperbola that represents t he  locus of all possible 

t r ans fe r  o r b i t s  leaving f r o m  cl and a r r iv ing  a t  c2. 

Figure 2. 

each of these hyperbolae t h a t  represents the ' t ransfer  o r b i t .  

These are s h m  i n  

It i s  important t o  note that f o r  every p, there  i s  one point on 

These two hyperbolae refer t o  the so-called short  t ransfer ,  i n  

which the t rue  anomaly in t e rva l  traversed i n  the t r ans fe r  o r b i t  i s  less 

than 180". 

transfer"), the other branches of these 3amb two hyperbolae represent the 

locus of a l l  transfer o rb i t s .  

sign of Etl and Xt2. 

If the  t rue  anomaly in te rva l  is grea ter  than 180" ("long 

These are obtained by aimply changing the 

- .. 
In Figure 2, the vectors El and x2, defining the i n i t i a l  and 

final orbi t s ,  a m  i n  the  transfer o r b i t  plane t o  simpUfy t he  analysis. 

Then t h i s  par t icu lar  Bell-Arenstorf diagram represents a coplanar t r ans fe r  

and El and x2, defined by - 
- 3 

f 
11 - (*) 

E2 = (%) 

El x (21 + LJl) 

E2 x (2 + !lz>. 
- 

must have magnitudes l e s s  than parab0U.c speed (V+r). 

t h e  initial and f inal  orb i t s )  enarmte f r o m  q and c2 and must l3.e within a 



c e r t a i n  radius containing a l l  e l l i p t i c a l  o rb i t s .  

I n  finding the minimumvelocity change solut ion f o r  t h i s  two- 

impulse case, t he  function t o  be minimized i s  

I (P)  =Tl(P) + *-2(P) 
where 

- 
92(P) = 1x2- + Vt2 (PI1 (23 1 

%e double sign on the t ransfer  ve loc i ty  vector r e f e r s  t o  short  and 

long t r ans fe r s  (upper sign i s  short). 

procedure requiqes that t h e  sum of the  dis tances  f r o m  1,. and 

respective transfer loci minimized. 

one point on each hyperbola corresponding t o  that transfer o rb i t .  

I n  the diagram, t h i s  optimization 

t o  t h e i r  

For e-rp p, there  is one and 0- 

The d i s -  

tames marke411p a-nd IzP ( In  Figure 2) represent simply a pa r t i cu la r  

transfer o rb i t  chosen f o r  i l l u s t r a t i v e  purposes. 

nitudes would represent t he  impulse necessary to  transfer between these  

two points along tha t  par t icu lar  conic. 

The sums of t h e i r  mag- 
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V. APPLJCATION OF EiELL-AREIJSTORF "ECHNIQUE: 

"he Bell-Arenstorf technique 'provides an excel lent  geometrical 

image of what is occurring i n  the two-impulse o r b i t a l  t ransfer .  

t h e  magnitudes of the impulse vectors f o r  different transfer o rb i t s ,  one 

can gain an i n tu i t i ve  fee l ing  f o r  the s i z e  of the  impulse f o r  a particuLar 

t r ans fe r  o rb i t .  

technique offered clues t o  two of  the  more important questions i n  t h e  f i e l d .  

$- comparing 

Nore important, though, was t h e  f a c t  t h a t  the Bell-.benstorf 

I n  I+. McCue s paper ( 5 )  he conducts a numerical search f o r  the  

minimum impulse f o r  each arrival-point, departure-point configuration and 

then, by a method of contour mapping, loca tes  the  opt- transfer between 

any two ellfptical orbits. 

could only be one mimimum in the impulse Arnction (variable p, semi-latus 

rectum of transfer o r b i t )  f o r  a f ixed pair of terminals. 

technique c lear ly  showed t h e  existence of a double minimum f o r  a ce r t a in  

case and thus impUed the existence of c e r t a i n  configurations under which 

a double minimum may be present. 

QH) of his ear ly  assumptiom wa8 that there  

The Bell-Arenstorf . 

L 

It has been implied i n  near ly  all of the  de f in i t i ve  ana ly t i ca l  

h r k s  i n  this area, such as t h a t  by Al t r~an '~ ) ,  that the  minimum veloci ty  -. ._ 

increment solution between points on e l l i p t i c a l  o r b i t s  was always an 

ellipse. 

minima f o r  cer ta in  configurations-this f a c t  

The Bell-Arenstorf technique suggested t h e  existence of hyperbolic 

subsequently proved. . 

The use of the Bell-Arenstorf technique stimulated fu r the r  analyt ic  ' 

invest igat ions whose findings have been incorporated i n t o  M r .  McCue's op- 

t imizat ion program. 



VI. LOCATION OF DOUBLE MINIMUM 

In order t o  assert that t he re  can be a double minimum i n  the  

impulse i b c t i o n  for fixed terminals, it is necessazy only t o  f ind  an ex- 

ample. 

t h i s  example can be readily i l lus t ra ted .  

considering a particular case w i t h  Unique symP3letrg properties, 

Consider t h e  case where 1 rl] = I r2 I (Figure 3 ). This makes 

the  angle a (Figure 2) equal t o  the angle 8 .  "hen the  hyperbolae formed 

between t h e  oblique axes at  both t h e  departure point and the  arrival point 

are equivalent. 

and translated t o  Q, then these two hyperbolp  would become coincident- 

they would mrtch up polnt for point, transfer o r b i t  for transfer o rb i t .  

Then t he  impulse function for particular elliptical o r b i t s  (defined by 

Il and 3, both of which now a c t  a t  t he  same' point)  is om t h e  sum of the  

distances from ITl and E2 to all points on the  hyperbola. 

case, t h e  ndninum impulse solution corresponds t o  t he  point on t h e  hyperbola 

f r o m  which the  sum of the  distances t o  xl and IT2 i s  a minimum. 

If the e n t i r e  coordinate system a t  9 were f l lpped over 

- 
Then, for this 

For points with equal radii, one possible transfer orbit corres- 

7 

ponds t o  a c i r c u h r  t ransfer .  'his transfer has a ve loc i ty  vector (gr) 
, '  

perpendicular t o  the  radius vector ani i ts  msgnitude i s  given by 

4' A l l  veloci ty  vectors earanrting from that have ragnitudes less .&& 



Suppose ll and 5 are located i n  such posi t ions (See Figure 3) ,  

r e l a t i v e  t o  each other, t h a t  the Une connecting them i n t e r s e c t s  the hyper- 

bola (e i ther  short  transfer branch or long transfer branch) twice. As p c 

I 
. k?;. +!g 

var i e s  f r o m  zero t o  i t s  unbounded upper value, all possible transfer o r b i t s  .a& - :g 
have a corresponding point on the hyperbola. As p increases  along the  

hyperbola, the value of the  impulse i s  obviously decreasing unti l  p reaches 

the  value corresponding t o  a, where the  l i n e  between V 

t he  hyperbola. 

responding t o  point b), according t o  t h e  t r i ang le  inequal i ty  the impulse 

must be higher. 

iraumin the impulse function. 

and V i n t e r s e c t s  -1 -2 
For values o f  p s l i g h t l y  la rger  than a (such a s  the p cor- 

Thus t h e  value o f  p a t  a must cons t i tu te  a r e l a t i v e  min- 

As p nears the  value corresponding t o  point c on t h e  hyperbola, 

t he  triangle inequal i ty  states t h a t  t he  necessary t r a n s f e r  impulse i s  going 

down again. 

also be a r e l a t ive  minfmum. 

demonstrated. 

- v 

For points past c, the  impulse i s  risirg again, and thus c must . 
The f a c t  that there  can be two minima is thus  

Numbers were placed into the  diagram and indeed a double minimum 
L 

(See Figure 4 )  occurred. 

terpzinal case are given on the graph. For t h i s  case, t he  long t r ans fe r  

provides a greater impulse requirement f o r  a l l  transfers--thus o n l y  t he  

shor t  t r ans fe r  'is plotted.  

The orb i t a l  elements f o r  t h a t  pa r t i cu la r  f ixed 

In Appendix 2 a short mathematical inves t iga t ion  of the  c r i t e r i a  

for the  existence of the  double minimum i n  the case of equal r a d i i  is 

car r ied  out. 

t o  the problem, was not easily extendable t o  the  case of non-equal r a d i i .  

This investigation, which did lend some i n t u i t i v e  understanding 
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V I I .  LOCATION OF HYPERBOLIC ?ZXIX” 

The assumption has been made, i n  pr ior  two-impulse o r b i t a l  

t r ans fe r  studies, t h a t  t h e  minimum t r ans fe r  between two points on e l l i p t i -  . 
cal o r b i t s  always lies along an e l l ipse .  

proved, it has been generally accepted. 

showed t h i s  assumption t o  be false. 

Although t h i s  has never been 
.’* 

Use of the  Bell-Arenstorf technique 

For the case o f l r  I =lz21 , it i s  c lear  from Figure 5 t h a t  a -1 

hyperbolic m i W  may exis t .  Once again, t h e  coordinate system at  r2 is - 
rotated and fl ipped such tha t  a l l  possible t r ans fe r  o r b i t s  are given by 

one hyperbola. If t h e  vectors ll and V l i e  i n  the  shaded region (see -2 
- :;”&* i n se r t ) ,  the  shortest  distance Prom each t o  the  transfer o r b i t  hyperbola 

arrives at a point on t h a t  hyperbola outside the parabolic o r b i t  limit. 

.. - 

-A. < t -. 

Since the  l e a s t  veloci ty  increment - both t o  arrive i n  the  t r ans fe r  o r b i t  

and depart from i t  - l i e s  along hyperbolic t ransfers ,  t h e  sum of the two, 

the  impulse, must have i t s  minimum along a hyperbolic o rb i t  between these 
t 

two. e- 

I n  investigating the mre general’case of non-equal radii, the  

geometry yielded not only configurations f o r  which the  minimum veloc i ty  

increment solution coiild l i e  a long  a hyperbola, but also some other  i n t e re s t -  

ing properties about t h i s  orb i ta l  transfer f’unction, 

The general - Bell-Arenstorf technique diagram can be modified (See 

Figure 6 )  i n  such a way as t o  orient both hyperbolae about the same 

coordinate &s w i t h  a c o m n  asyrrrptote. 

rectum of t h e  t r ans fe r  orbit, there is one and only  one point on each 

hyperbola, some manner of relating corresponding t ransfer  o r b i t s  must be 

6 

Since for every p, t he  semi-latus 

-18- 



found. I n  Appendix 3 it  i s  shown t h a t  there  exist two families of c i r c l e s ,  

with centers on the r - r d s  and r a d i i  dependent on t h e  pararmter p, t h a t  -2 -1 0 

i n t e r sec t  the hyperbolae i n  such a way as t o  iden t i fy  t h e  points  r e fe r r ing  . *" 
* -St t o  the  same transfer o rb i t .  One family refers t o  the short  transfers; the  3; 
* .& >* 

other,  t o  t he  long. The short  transfer family begins at the origin,  with a %x. 4 - .  
nienber of i n f i n i t e  radius, and mves l e f t  through a l l  possible values of F; 

t h e  long t ransfer  fmiily goes i n  the  o2posite direct ion,  also w i t h  increasing 

radius  magnitude. 

For e v e q  fixed arrival-point, departure-Foint configuration, t h e r e  

are two bounds on the vnlues o f t h e  seni-latus rectum of t'ce t r ans fe r  o r b i t  

that define all e l l i p t i c a l  transfer orb i t s .  These "parabolic o r b i t  limits" 

are defined by 

_. 
' *~ 

.@s. 
"1 . .,. ( 5 )  Y 

( 2 4 )  

- - . r r  1 2 - E l . %  
A min r1 -t r2 -t (air2 + . r2)z r 

I n  t h e  Bell-Arenstorf diagram, as p increases f ron  zero t o  infinity, 
c 

t he  r a d i i  of the family of c i rc les  diminish f o r  both the long and short  trms- 

fe r s .  

along a hyperbola i s  meaningless; s b i l a r l y ,  f o r  F<F-:-, the  short  t r ans fe r  

h ip l i e s  going out t o  infinity t o  c o q l e t e  the  o rb i t .  

It i s  important t o  cote t h a t  f o r  p>pma;c, the  long t r a n s f e r ' s  being 

. .A*. 

- 
Regardless of what cl and 2, are, there  e x i s t s  sone value of p 

t h a t  defines the  lower M t  of e l l i p t i c a l  transfer orb i t s .  

mrked "parabolic o rb i t  limit" has i ts  center at  a point t h a t  is a value of 

p a t  which the long t r ans fe r s  change from hyperbolic i n t o  e l l i p t i c a l .  Even 

though it is true t h a t  for every r 

The c i r c l e  

and r t h i s  c i r c l e  i s  located at -1 2 



a d i f f e r e n t  place, i t  i s  important t h a t  it does e x i s t  somewhere and thus 

can b3 located a r b i t r a r i l y .  Then a l l  i n i t i a l  o r b i t s  whose ve loc i ty  vector 

a t  xl Xes L i l d e  t he  c i r c l e  of radius A are e l l i p t i c a l ;  similarly f o r  a l l  

f i n a l  o r b i t s  h o s e  veloci ty  vector at r l ies  ins ide  t h e  c i r c l e  of radius  

B. 

V -2 
first increment change ( to  get i n t o  t h e  t r ans fe r  o r b i t )  and the least f i n a l  

increment change are  t o  transfer o r b i t s  t h a t  are hyperbolic. It is an easy 

extension t o  see t h a t  the  sum of these two is a minimum along a hyperbola 

somewhere between these. L 

-2 

Suppose t h e  i n i t i a l  and final orbits define ve loc i ty  vectors  El and 

such t h a t  they ai.e located as i n  Mgure 5 .  It i s  c l e a r  t h a t  t h e  least 

I n  Figure 7, impulse is plo t ted  against the  semi-latus rectum of 

the  trawfer o r b i t  f o r  a par t icular  configuration. 

limits are xmrked and the o rb i t a l  parameters are given--clearly t h e  minimum 

t r a n s f e r  i s  along a h p r b o l a .  

The parabolic o r b i t  

. ,:J” .,.. : . . .^ I .  

9.. 
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FIGURE 5. E X A M P L E  OF HYPERBOLIC M I N I M U M  
- CASE OF EQUAL R A D I I  
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F I G U R E  6. HYPERBOLIC MINIMUM T R A N S F E R  - 
C A S E  O F  N O N - E Q U A L  R A D I I  
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?,e loca t ion  of these p e c u l i a r i t i e s  i n  t h e  h p u l s e  f’unction 

-‘I 

& prOmFted an ana ly t i c  search i n t o  t h e  equations t h a t  descr ibe  t h e  impulse 

problem. 

limits, were sought f o r  t h e  minim.  

New ana ly t i c  boundaries, d i f f e r e n t  from t h e  parabol ic  o r b i t  

For f ixed  terminals (once again it 
: ’* 

should be pointed out t h a t  t h i s  is a r e s t r i c t e d  case of  t he  more general  
7; ,” 

problem of optimizine between any po in t s  on e l l i p t i c a l  o r b i t s ) ,  the  impulsd 

func t ion  i s  only dependent on p, t h e  semi- la tus  rectum of the  t r a n s f e r  

o r b i t .  

a t  a l l  po in ts  p where 

This impulse function, defined by equation (211, h a s  an  extremum 

. 2- 

In  t h e  analysis of the  impulse func t ion  c a r r i e d  out here ,  o n l y  
.- 

t he  shor t  tra$sfer.; a r e  considered. It is shown i n  a subsequent s ec t ion  

where 



S i m i  la r ly , 

where 

g(p)  = Ap + 2J3ph + H - 2Fp-1 - Dp'l 

where the new coeff ic ients  a r e  also given in Table 1. 

Then, i n  order f o r  impulse t o  be an extremum, 

Since 'k1(p) and q2(p) a r e  always posit ive,  it is easy t o  see 

must be of different sign before an from equation (32) t h a t  df and 

extremum can occur i n  the impulse function. 
dP dP 

' h i s  important f a c t  permits 

the ident i f ica t ion  of the extraneous roots in the eighth-order polynomial 

that will be derived. 

Then 

and 

Before a maningful expression can be worked out f o r  the extrema - 
i n  the impulse, 

aion becomes 

equation (32) must be squared. Then the  necessary expres- 

-25- 



or 

"+ When t h i s  equation i s  d t i p U e d  out using equations (271, (281, (33 1, and 

(34), together with the subst i tut ion 
.-:%. 

->&? 
s = p  3 (36 ) ,. 

the  necessary condition for an extremum becomes 
7 8p8 + g2s + 4 s 6  + f l p 5  + g 5 s 4  + g6S3 + g7s2 + g*s + i, = 0 (37) 

where t h e  coeff ic ients  fli, i = 1-8 are given i n  Table 2. 

t h i s  eighth-order polynomial must include all the  values of p f o r  which 

The r e a l  roots  of 

,;& 
3 K. the impulse is  an extremum. * :,y 

The squaring process introduced i n  equation (35) added some 
*. 

, --*; extraneous roots  t o  the octic-mots which do not correspond t o  extrans . 
e -  1 

in I (p) .  These can be identified by factor ing equation (35) as the  d i f -  

ference of two squares. ..; .'e. 
e 

(38 ) 

Since df and 3 must be of different  sign, only those real values of p 

which are roots  o f  
aP 

- 

*'1(P) a +\1/2(p) hf = 0 (39 1 
a p  a p  

are t rue  extrema of I (p) .  

equation 

It is easily shown (See Appendix 4) that the  

-26- 
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contains the extraneous roots  of the  oc t i c  and refers t o  extrexra i n  another 

-:a. 
Inquiries in to  the nature of t h i s  o c t i c  suggest t h a t  four of t h e s e  

roots  r e f e r  t o  extrema i n  I*(p). Although no general proof has  been made, 

i f  t h i s  f a c t  were t rue for a l l  configurations, then there  could be no more 

than two minima on e i the r  transfer branch. This would greatly simplify 

the  appl icat ion of the contour mapping approach. 

I n  M r .  Altmm's pper, he i d e n t i f i e s  an  eighth-order polynomial, 

t h e  roots of which refer t o  minima in t he  case of two-lmpulse o r b i t a l  

& x . *  <. ,~ transfer between coplanar orbi ts .  

us ing different techniques, both t o  inc$ude incl ined o r b i t s  a d  t o  iden t i fy  

those roots  of the equation that are extraneous and do not refer t o  minima 

i n  the impulse function. 

Equation (37) extends the analysis, 
*?. 

v 



IX. THE BOUIDARES ON X I N D I A  

Since a necessary condition f o r  t h e  existence of an  extremum i n  

t h e  impulse function i s  t h a t  df and dL be of  d i f f e ren t  sign, analyses were 
8: 

'c1 
aP 

next directe.1 t o  determine the  values f o r  p f o r  which they could be of *s 

d i f f e r e n t  sign. . 
From equations ( 3 3 )  and (34) ,  

D = - p tan2 E (45 
2 

:.e 
Since f o r  p both very smll and very Large, df and & have t h e  same sign, 3 .  

a p  a p  
tie know t h a t  the region i n  which df rAnd & a r e  of d i f f e ren t  s ign  may def- 

i n i t e ly  be bounded. 

function (on short  t r ans fe r  s i d e )  must l i e  are given by t h e  least positive 

value of r and the  greatest posit ive value of p a t  which e i t h e r  

aP dP 
-.e boundaries i n  which a 2  minima i n  the  impulse 

df = 0 o r &  = 0 
a p  a P  

Since, f o r  s = $, E = o here 

~~ 



As L + Bs3 + Cs + D = 0 
( 4 7 )  

Similarly,  & = 0 where 
a p  

As' + Es 3 + Fa + D = 0 !r;S 1 
... 

+- 1. :: L. 
These values f o r  p that bound the minim can be readily obtained. It is -3 2 

? 

shown in a subsequent section that these equations also give the' intervals 

for the long transfer. 

range of the impulse minima have been ascertained. 

T h i s ,  definite, analytic boundaries on the possible 

c 
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X. THE 1NTE;RVALS 

a Since both df and have negative values f o r  p very small and 
aP ap 

posi t ive values fo r  p very Large, both expressions (47 and 48) must have 

a n  odd number of posit ive real  roots. 

have e i t h e r  one o r  three real positive roots.  

Each of these quart ic  equations may 

Regardless how many of these 

roots  each of these quart ics  has, a l l  possible combinations of the  roots  
I .  

can be studied by investigating two types of in te rva ls  i n  which df and &Z 

may be of d i f fe ren t  sign. 

'Type A:  

a p  ap 

1) df and $f of different s ign i n  [a, b] al; 
(49 1 

= 0;  (g) = ,o 
2, (E) P = a  P " b  

= O; (%Ip = a (dP = a 

Type B: 1) df and h of different  sign i n  [a, b] 
a p  ap  

(50)  
= o  2) af 

It is important t o  note that ii, i n  equation (491, df. ami & 
a P  a P  

are zero a t  opposite ends of the  i n t e r v a l  from those given, t he  problem i s  

not really changed. Similarly, i f  i n  equation (50) it is dg which i s  zero 

a t  both ends, the  analysis of the types of i n t e rva l s  s t i l l  holds. I n  type 
a p  

A each of the functions i s  zero at  one end of the in te rva l ;  i n  type B, one 

function is zero a t  both ends of the in te rva l .  

a r e  i l l u s t r a t e d  i n  Figure 8 .  

The two types of intervals 

These in te rva ls  a r e  divided i n t o  two types because the  number of 

Define two minima possible i n  a given interval  15 determined by i t s  type. 

-30- 
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f u n c t i m s  a ( p )  and T(p) as 

= - & 
Y A t- 

Obviously, an extremum i r ,  the imIjulse funct ion occurs for 

d p )  = d P ) .  

Consider an in t e rva l  of Type A. T Is monotonic 

pos i t ive  for a l l  p i n  [a, b]. 

c ( a )  = O 

Also, note t h a t  

9,. 

( 5 2 )  

. r.; 
a i l  p a t  which 

ncreasing and 

(53 1 

and 
2% 

(54 1 

** From Figure 8, it  is c lea r  u and r must i n t e r s e c t  a t  least one time (pro- 

ducing one extremum) i n  t h a t  interval .  

they  must in t e r sec t  an odd number of times. 

If t h e y  are equal more than once, 

Consider next an in te rva l  of Type B. Once n&n T is  monotonic 

increasing and posi t ive f o r  all p i n  [a, k]. Here, though 

(55 1 c ( a )  = o 

and 

c ( b )  = 0 (56 > 
while f o r  a l l  p i n  [a, b] , cr(p) > 0. 

CT and T must in t e r sec t  an  even number of times i n  in t e rva l s  of t h i s  type. 

It i s  evident from F i g u r e  8 that - 

A l l  possible permutations of t h e  roots  of these  qua r t i c s  can be 

manipulated t o  reduce .the problem t o  an arralysis of these in t e rva l s .  Most 

-31- 



f requent ly ,  bo th  df and a 9; have one real, p o s i t i v e  root  and produce an  
a F  d F  

. I n t e r v a l  of type A i n  which (T and T i n t e r s e c t  one time. 

t h a t ,  f o r  t h e  majority of  t he  cases, t he  f i rs t  and last real  pos i t ive  

It is a l s o  t r u e  

r o o t s  of t h e  two quar t ics  will limit t h e  search f o r  t h e  minimum impulse t o  

e l l i p t i c a l  t r a n s f e r  o r b i t s .  

i s t e n c e  o f  t h e  two p e c u l i a r i t i e s  located e a r l i e r .  

These analyses r& however, explain the  ex- 

, 

* : 
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X I .  LONG AND SHORT TRANSFER 

For nearly a l l  t he  equations derived i n  the  preceding sections,  

it was assumed tha t  t he  two-impulse o r b i t a l  t r ans fe r  was accomplished wi th  

a t r u e  anomaly i n t e r v a l  in the t ransfer  o r b i t  of less than 180"--short 

t r ans fe r .  

transfers very simple. 

then compared. 

The qmnetry of the problem makes extension t o  include t h e  long 

To obtain t h e  absolute ndnirmrm impulse, the  two are 

Because of t h e  sybetry (See Appendix 5 f o r  de ta i led  der ivat ion 

of long t ransfer  equations) it can be shown t h a t  the real, nemt ive  roots  

of equations ( 3 3 )  and ( 3 4 )  determine in t e rva l s  on the  long t r ans fe r  side 

that m y  produce minima. 

general octic (Equation 3'7) that appear within those specified intervals 

that determine values of p for which the long transfer may be an extramum. 

Similarly, it is the real, neaative roo t s  of t he  

s 

This implies that a l l  the analysis can be conducted by examining - 
': .I  

" .  
t h ree  equations--two quart ic  and one oct ic .  The mal  roots  of these 

equations--positive for short transfer and negative for loG t ransfer-  

define a l l  the  intervals i n  which t he  extrema may d s t  and then locate  

- 1  

t h e  values of p a t  which extrema a c t u a l l y  occur. 

c 



In Mr. McCue’s work, he optimizes the  t r ans fe r  between two 

e l l i p t i c a l  orbits (not fixed terminals) by means of a contour Illapping 

rout ine  i n  the 64, space that connects transfers of equal impulse m- 

quirement. 

t ion ,  he conducts a numerical search minimization along p that is  confined 

within the parabolic o r b i t  limits. The r e s u l t s  of  t h e  ana ly t ic  investiga- 

. 
I n  locat ing the  minimum impulse for a particular a,-#, configura- 

t i ons  presented here have been incorporated i n t o  t h e  program to remove 

t h e  l i n i t a t i o n s .  

The solut ion of the  two quar t ics  (Equations 33 and 3 4 )  gives . - ‘rz. Y. 

the intervals t o  which the lrumerical search for minippa m y  be restricted. 

t i o n s  than one conducted kith t h e  o l d ‘ a r h i t r a r y  Units. . If the steepest 

descent progrant should-in rare instances-comrerge on two d i f f e ren t  values , 

Within t he  sams interval, the octic equation may be solved and i t 3  real ‘ 

roots c o q a r e d  to t h e  in t e rva l s  of possible mlnima. 

configurations, this process w i l l  require no more computer time than it 

d id  before the l imi ta t ions  were removed. 

For nearly all g1-$?$ 

. 
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TABU l. 

COE2FICIENTS OF TEST FUNCTIONS 

- p t a n 2 d B  
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New analy t ica l  approaches t o  the  two-impulse o r b i t a l  t r a n s f e r  

problem a r e  developed in t h i s  paper. 

discovery of both the  hyperbolic 

mininnnn veloci ty  increment solution between points  on e U p t i c a l  o rb i t s .  

Further  analyses produced an  eighth-order polpmia l - -appUcable  even for 

incl ined orbits--whose roots  contain all possible extrema i n  the  impulse 

This development precipi ta ted the  

and the  double minimum i n  the  

.. 
function. Next t e s t  functions were located t h a t  placed bounds on t h e  

regions i n  which these extrema could e x i s t  and iden t i f i ed  those  roots  of 

the  oc t ic  t h a t  were extraneous. 

roots-not corresponding t'o mi& i n  the @pulse Mction-was given. 

The explanation of these extraneous 
L 

Suit; havebeea'used t o  modif'y an earlier computer 

It is now possible t o  locate not only t h e  absolute minimum two- program. 

impulse transfer between fixed terminals f o r  any e l l i p t i c a l  o r b i t  pair, but 

a l s o  the absolute optimum transfer between aqr end points  on those orb i t s .  

, .  



TABU 2 

CCIEFFICIEKIS QF EIBITH-mm POlXNwIAL 

= A(@D - 4ED + 2FG- X H )  + @EF .. 2CE2 - 4BCE + 2FB2 

- D(8BF - 8EC + 2BC - 2EF) + F% - C% 
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APPENDIX I 
1 ,  

* ;: I. 

3% Derivation of Transfer Velocity Expressions: 'i- 

These equations appear i n  reference (5) and were or ig ina l ly  

derived by 13r. H. W. Bell. 

Begin with the  vector expressions f o r  t h e  transfer o r b i t  ve loc i t ies ,  
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... . .  ' .  

and 

therefore, - q) 3. - c o a A 8  
ain A0 

+ 

B u t ,  

& *  1 - COS A€) 
= t an -  

s i n  A@ 2 

which impldes that 

= - v + 2y1 

El 1 

( Al-19 



,L..?‘, 

>: ? . , .. . 
.. . , 

, .. -. , 

Similarly, 

where 

and 

z = (+) h ( tan?)  

, 

. I- 

>. . 



On t h e  Cr i t e r i a  f o r  Existence of Double Minimum i n  Case of Equal FajiL: 

After the existence of the  double minirmun was first es:--klished, 

t he  next research was directed t m r d  finding t h e  necessary and suf f ic ien t  

conditions f o r  this eds t ence .  

more o r  l e s s  obtainable. 

In  t he  equal radii case, the answer was 

If, fo r  any q - r2 configuration i?..jr,: I - - I %I, t h e  t r ans fe r  

ve loc i ty  (See Figure  2 )  hyperbola i s  considered t o  be symmetrical about an . - <  --<r& 
t . y  . .,, x 4 s  of a rectangglsr :artesian coordinate system, t h e  ana ly t ic  equation 

of t h i s  hyperbola can be derived. From the general expression, 

. 2  2 
r - . - a L = 1 * :  I .  

a b2 

and t h e  knowledge that 

t a n ( 4 5 - 3 ; .  - a 
b 

and t h e  fact that there  exists one point po on the hyperbob where 

PO 

I ,*- 
*: 

'r' 

L e  ' 4  s -  

. . ;d 
e:% 

* p - 3  t he  equation f o r  t h i s  hyperbola is given as 
. q (A2-5) : 

2 2 r ( g  cos% - x2 s i n  U> = b  cos 2 9  

where 

)i : 

-.. . 
.. . , ._*. . 

1 1  



.+&4--u*$ 
1 .  

' .  

pcos 2Y 
r s i n  2 9  

pcos 2 9  tj2 = - 
r c o s 2 9  

' a 2 = -  

The two e l l i p t i c d l  orbits, i n i t i a l  and -1, are  defined by 

t h e i r  veloci ty  vectors at gland g2. 

t he  same coordinate system as the hyperbola are read i ly  found f romthe  

The coordinates of these vectors in 

geometry and elementary ce l e s t i a l  mechanics (1). 

Suppose* 

11 = " 1 L + Y l  L 

. .;. 

. -  

E :  * -  

of e U p t i c a l  orbits, two points i n  t h i s  
. -  *-. 

system are determined. There ia also a corresponding magnitude s, where 
2 3  (A2-U 1 2 

dv- = (+ - xl) + b, - Y ~ )  1 
In the Bell-Arenstorf diagram, it i s  important t o  remember t h a t  for 

the cam where zl = Q , impulse foa a particular transfer is nothing mo 

than the sum of the distances from El and % to the point on the hyperbola 

representing tha t  t ransfer .  

+.= a defined by and V i n  t h i s  coordinate system be considered as t he  foci 

f o r  a family of confocal ellipses. 
-2 

Each scalar value k, - 



defines  a mmber of this family. Let 

k - s1 f s2 
Then s and s2 are, for aqy particular ellipse, t h e  distances f r o m  El sad 

to that eUpse-- their  sum must be a conatant f o r  aqp member of t h e  
L 

I 

family. 

I n  terms of the Bell-Arenstorf diagram, each mmber of the  family 

corresponds t o  a cer ta in  impulse value--as k grows larger ,  eventually a 

member of the family (See FIgure A2-1)  i n t e r sec t s  the  hyperbola a t  a point 

of  tangency. 

orbi t ,  must be a relative nr&hm in inpahe. 

That paint on the hyperbola, representing a par t i cu la r  

This is easily seen I f  kha 

- -7 - ... 1 

points, one on e i the r  side of the earUer point o f  tangency-it represskc& 
(I '.*e 

~ .* '  
yky h ighe r  impulse. It is an easy in tu i t ive  extension t o  realize t h a t  every 

E ..% 
I I, 

point a t  which a member of t he  f a m i l s  of e l l i p s e s  is  tangent t o  e i t h e r  .1 .. ' 
7. 6 

branch of the  hyperbola produces a ,relative extremum i n  e i t h e r  t h e  l o k  

short t ransfer .  

'., , n I n  Figure A2-1, on t h e  right, an example i s  given of a typ ica l  - -  
" 1  

- V configuration that produces ane point of tangencp-one relative 11 -2 

minimum--on each of the two branches. 

conf'iguration that produces a double minimum (see members 2 and 3 of t h e  

family) by having three points of tangency on one branch of the  hyperbola. ' 

Note t h a t  if t h e  family of e l l ipses  has three members tangent t o  one b 

of the  hyptrbola, there  must exist sonm member of the  family that inter- 

The other  example is  a ]II - 
- 



s1 + s = k as t h e  var iable  parameter, can be readi ly  derived, t h e  c r i t e r i a  

f o r  t h e  existence of a double minimum can be simplified--for some member of 

the  family, t h e  fourth-order polynomial representing the  in t e r sec t ion  of 

t h a t  el l ipse and the  velocity hyperbola has four rea l  roots of the  same 

sign (on t h e  same branch) if and o n l y  i f  a double minimum exists on t h a t  

branch. 

2 
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APPENDIX 3 

Method of Determining Corresponding Transfers on Velocity Hyperbolae: 

In Figure 6, the hyperbola representing all possible transfe 

orbits that arrive at  r;2 and pass through zl i s  transformed so t h a t  bo 

of the  hyperbolae have the same reference point and one c o m n  asp@ 

It is  next necessary t o  determine t h e  corresponding points on the  hyperb 

t h a t  is, t o  find some way of relating-transfer orbit f o r  transfer orbit-the 

point on one hyperbola. with the point defining the same t ransfer  o r b i t  on the  



~ 

For arry rea l ,  positive value of p, the component of each of 

these t ransfer  velocity vectors i n  the r2 - Q di rec t ion  is given by 

h = - k P  = 
It1 (comp r2 - xi) 
Therefore for any p, there  d s t s  aomb point on the r2 - fr  

I t 2  (comp c2 - zl) 

axis t h a t  corresponds t o  t h i s  component. 

where 

Suppose a circle  of radlus +; 

-3 lctt = hp 

.. !.%* 

is circumscribed about that point as center.  Then both the t r ans fe r  ve loc i ty  . ';%@ 
,- *A$&+< 
. *>*<&*$ 

vectors f o r  t ha t  par t icu lar  t ransfer  must end on that c i r c l e .  Therefore, f o r  :. --$-s 



EtPPEflDIX 4 

Ident i f ica t ion  of Gdraneous Roots t o  Cctic : 

The eighth-order polynomial expression (Equation 37), whose 

roots  contain the values of p at which the  impulse function has a mi 

also has some roots that do not m f e r  t o  irnpulss &rema. 

I 



. I .  

This occurs whenever 

I 

I OC 

\y,(P) - dg - 02(P) !2 = 0 
a P  d P  I 

I This i d e n t i f i e s  the extraneous roots. 

This function I*(p) corresponds t o  the difference between t h e  

Cases where this function has mgnitudes of the two velocity increments. 





Then 



equation (47) .  The same correspondence holds for the  roots dk * 0 and 

be ascertained. 

A n  eighth-order polynomial whose roots contain t h e  impulse 

minima also d s t s  for the long t ransfer .  

the necessarv exmession becomes 

By squaring equation (A5-5), 


